The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments.
نویسندگان
چکیده
Hortaea werneckii and Aureobasidium pullulans, black yeast-like fungi isolated from hypersaline waters of salterns as their natural ecological niche, have been previously defined as halophilic and halotolerant microorganisms, respectively. In the present study we assessed their growth and determined the intracellular cation concentrations of salt-adapted and non-salt-adapted cells of both species at a wide range of salinities (0 to 25% NaCl and 0 to 20% NaCl, respectively). Although 5% NaCl improved the growth of H. werneckii, even the minimal addition of NaCl to the growth medium slowed down the growth rate of A. pullulans, confirming their halophilic and halotolerant nature. Salt-adapted cells of H. werneckii and A. pullulans kept very low amounts of internal Na+ even when grown at high NaCl concentrations and can be thus considered Na+ excluders, suggesting the existence of efficient mechanisms for the regulation of ion fluxes. Based on our results, we can conclude that these organisms do not use K+ or Na+ for osmoregulation. Comparison of cation fluctuations after a hyperosmotic shock, to which nonadapted cells of both species were exposed, demonstrated better ionic homeostasis regulation of H. werneckii compared to A. pullulans. We observed small fluctuations of cation concentrations after a hyperosmotic shock in nonadapted A. pullulans similar to those in salt-adapted H. werneckii, which additionally confirmed better regulation of ionic homeostasis in the latter. These features can be expected from organisms adapted to survival within a wide range of salinities and to occasional exposure to extremely high NaCl concentrations, both characteristic for their natural environment.
منابع مشابه
Ergosterol biosynthesis in novel melanized fungi from hypersaline environments.
Halotolerant and halophilic melanized fungi were recently described in hypersaline waters. A close study of the sterol composition of such fungi, namely Hortaea werneckii, Alternaria alternata, Cladosporium sphaerospermum, Cladosporium sp., and Aureobasidium pullulans revealed the dominance of ergosterol and the presence of 29 intermediates of its biosynthesis pathway. The presence or absence o...
متن کاملExtremely Halotolerant and Halophilic Fungi Inhabit Brine in Solar Salterns Around the Globe
For a long time halotolerant and halophilic fungi have been known exclusively as contaminants of food preserved with high concentrations of either salt or sugar. They were first reported in 2000 to be active inhabitants of hypersaline environments, when they were found in man-made solar salterns in Slovenia. Since then, they have been described in different salterns and salt lakes on three cont...
متن کاملOverview of Oxidative Stress Response Genes in Selected Halophilic Fungi
Exposure of microorganisms to stress, including to high concentrations of salt, can lead to increased production of reactive oxygen species in the cell. To limit the resulting damage, cells have evolved a variety of antioxidant defenses. The role of these defenses in halotolerance has been proposed before. Whole genome sequencing for some of the most halotolerant and halophilic fungal species h...
متن کاملMelanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns
Until recently, it was believed that microbial communities at high salinities are dominated exclusively by Archaea and Bacteria and one eukaryotic species, the alga Dunaliella salina. Recently, it became evident that melanized fungi, so far described only in the crystallization pond of Adriatic salterns within the season of salt production, can be considered as a new group of eukaryotic halophi...
متن کاملAdaptation of extremely halotolerant black yeast Hortaea werneckii to increased osmolarity: a molecular perspective at a glance
Halophilic adaptations have been studied almost exclusively on prokaryotic microorganisms. Discovery of the black yeast Hortaea werneckii as the dominant fungal species in hypersaline waters enabled the introduction of a new model organism to study the mechanisms of salt tolerance in eukaryotes. Its strategies of cellular osmotic adaptations on the physiological and molecular level revealed nov...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 71 11 شماره
صفحات -
تاریخ انتشار 2005